
 

Institute of  

Applied Informatics and  

Formal Description Methods 

University Karlsruhe (TH) 

 
 

 

 

 

 

 

 
 

 

 

 

 

ASSIGNMENT 
„Modeling Workflow Patterns through a 

Control-flow perspective using BPMN and the 

BPM Modeler BizAgi“ 

 

 
cand. inform. Marcus Goetz 

 
Rehberg 25 

74858 Aglasterhausen 

marcus-goetz@gmx.de 
 

 

 

 

 

 

Referee:  Prof. Dr. Detlef Seese 

   Prof. Dr. Rudi Studer 

Adviser:  Dipl.-Wi.-Ing. Hagen Buchwald 

  



  
                II 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Index of Contents 

 
1 Abstract ........................................................................................................................................... 1 

1.1 Preamble .............................................................................................................................. 1 

1.2 Motivation ............................................................................................................................ 1 

1.3 Business Process Management .................................................................................... 2 

2 BizAgi ............................................................................................................................................... 2 

2.1 The company BizAgi ........................................................................................................ 2 

2.2 The product BizAgi ........................................................................................................... 3 

3 Workflowpatterns ....................................................................................................................... 3 

4 Implementation of the patterns ............................................................................................. 4 

4.1 Basic Control Flow Patterns ......................................................................................... 4 

4.1.1 Sequence (WCP 01) ................................................................................................... 4 

4.1.2 Parallel Split (WCP 02) ............................................................................................ 5 

4.1.3 Synchronization (WCP 03) ..................................................................................... 6 

4.1.4 Exclusive Choice (WCP 04) .................................................................................... 6 

4.1.5 Simple Merge (WCP 05) .......................................................................................... 7 

4.2 Advanced Branching and Synchronization Patterns ........................................... 8 

4.2.1 Multi-Choice (WCP 06) ............................................................................................ 8 

4.2.2 Structured Synchronizing Merge (WCP 07) .................................................... 9 

4.2.3 Multi Merge (WCP 08) .......................................................................................... 10 

4.2.4 Structured Discriminator (WCP 09) ................................................................ 11 

4.2.5 Blocking Discriminator (WCP 28) .................................................................... 11 

4.2.6 Cancelling Discriminator (WCP 29) ................................................................. 12 

4.2.7 Structured Partial Join (WCP 30)...................................................................... 12 

4.2.8 Blocking Partial Join (WCP 31) .......................................................................... 13 

4.2.9 Cancelling Partial Join (WCP 32) ...................................................................... 14 

4.2.10 Generalized AND-Join (WCP 33) ....................................................................... 14 

4.2.11 Local Synchronizing Merge (WCP 37) ............................................................ 15 

4.2.12 General Synchronizing Merge (WCP 38) ....................................................... 16 

4.2.13 Thread Merge (WCP 41) ...................................................................................... 16 

4.2.14 Thread Split (WCP 42) .......................................................................................... 18 

4.3 Multiple Instance Patterns ......................................................................................... 20 

4.3.1 Multiple Instances without Synchronization (WCP 12) .......................... 20 

4.3.2 Multiple Instances with a Priori Design-Time Knowledge (WCP 13) 22 

4.3.3 Multiple Instances with a Priori Run-Time Knowledge (WCP 14) ...... 24 

4.3.4 Multiple Instances without a Priori Run-Time Knowledge (WCP 15) 25 



 
III 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.3.5 Static Partial Join for Multiple Instances (WCP 34)................................... 26 

4.3.6 Cancelling Partial Join for Multiple Instances (WCP 35) ......................... 26 

4.3.6.1 Dynamic Partial Join for Multiple Instances (WCP 36) ................... 27 

4.4 State-based Patterns ..................................................................................................... 27 

4.4.1 Deferred Choice (WCP 16) .................................................................................. 27 

4.4.2 Interleaved Parallel Routing (WCP 17) .......................................................... 28 

4.4.3 Milestone (WCP 18) ............................................................................................... 28 

4.4.4 Critical Section (WCP 39) .................................................................................... 29 

4.4.5 Interleaved Routing (WCP 40) .......................................................................... 29 

4.5 Cancellation and Force Completion Patterns ...................................................... 30 

4.5.1 Cancel Task (WCP 19) ........................................................................................... 30 

4.5.2 Cancel Case (WCP 20) ........................................................................................... 31 

4.5.3 Cancel Region (WCP 25) ...................................................................................... 32 

4.5.4 Cancel Multiple Instance Activity (WCP 26) ................................................ 33 

4.5.5 Complete Multiple Instance Activity (WCP 27) .......................................... 34 

4.6 Iteration Patterns ........................................................................................................... 34 

4.6.1 Arbitrary Cycles (WCP 10) .................................................................................. 34 

4.6.2 Structured Loop (WCP 21) .................................................................................. 35 

4.6.2.1 Normal ................................................................................................................ 35 

4.6.2.2 Post ...................................................................................................................... 36 

4.6.2.3 Pre ........................................................................................................................ 37 

4.6.3 Recursion (WCP 22) .............................................................................................. 39 

4.7 Termination Patterns ................................................................................................... 39 

4.7.1 Implicit Termination (WCP 11)......................................................................... 39 

4.7.2 Explicit Termination (WCP 43) ......................................................................... 40 

4.8 Trigger Patterns ............................................................................................................. 41 

4.8.1 Transient Trigger (WCP 23) ............................................................................... 41 

4.8.2 Persistent Trigger (WCP 24) .............................................................................. 41 

5 Conclusion ................................................................................................................................... 42 

5.1 Overview about the results ........................................................................................ 42 

5.1.1 Basic Control Flow Patterns ............................................................................... 42 

5.1.2 Advanced Branching and Synchronisation Patterns................................. 43 

5.1.3 Multiple Instance Patterns .................................................................................. 43 

5.1.4 State-based Patterns .............................................................................................. 44 

5.1.5 Cancellation and Force Completion Patterns .............................................. 44 

5.1.6 Iteration Patterns ................................................................................................... 44 



  
                IV 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

5.1.7 Termination Patterns ............................................................................................ 44 

5.1.8 Trigger Patterns ...................................................................................................... 44 

5.2 Wrap Up ............................................................................................................................. 44 

5.3 Forecast ............................................................................................................................. 45 

6 List of Literature ....................................................................................................................... 46 

7 List of Illustrations ................................................................................................................... 46 



 
1 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

1 Abstract 
This assignment is about Workflowpatterns and the Business Process Management 

Software Solutions of the company BizAgi. In the first chapter you will get a brief 

introduction to the area of Business Process Management. Afterwards I will inform 

you a bit about the company BizAgi and their product BizAgi. After that chapter 

you will find more information about Workflowpatterns in chapter three. The main 

part of my work is chapter 4 where I am trying to realize the different 

workflowpatterns in BizAgi. Concluding to this is my conclusion and forecast. 

 

I assert that I have written this assignment completely on my own. All used 

sources of information are marked or quoted in the text. 

1.1 Preamble 
First of all I would like to thank everybody who supported me during the work on 

my assignment. 

 

A special thanks goes to Professor Dr. Detlef Seese and Professor Dr. Rudi Studer 

for being my two mentors and supporters for this assignment. 

 

I also would like to thank Dipl.-Wi.-Ing. Hagen Buchwald and Dipl.-Wi.-Ing. Oliver 

Schöll for supporting me during my practical studies in this assignment. I’ve been 

able to profit a lot from their huge knowledge in the area of Business Process 

Management and their good skills in the BizAgi BPM Suite. 

 

Another person I would like to thank is Gustavo Gomez, the CEO of BizAgi. He 

made this assignment possible supplying me with a free-of-charge license of their 

BizAgi BPM Suite. 

 

Additionally I would like to thank Marcel Manser who was my direct contact 

person at BizAgi. He always tried to help me with every issue I had and he was a 

great support for my product evaluation. 

1.2 Motivation 
This assignment is about the BPM Suite of the company BizAgi (which also is called 

BizAgi) and the 43 workflow patterns (control-flow perspective) of Prof. van der 

Aalst. What motivated me for this assignment was the following: 

 

Prof. van der Aalst has invented 43 Patterns for Workflows (out of a control flow 

perspective) which describe different flows in Business Processes and Workflows 

which recur very often in day-to-day business problems. He has grouped those 

patterns in different categories. I was curious to see if a particular BPM Tool was 

able to map all those patterns – and if not, to find out why. Since the BPM Modeler 

and the BPM Suite of BizAgi is one of the market leader application software 

[BizAgi09] I wanted to find out whether this ranking was appropriate or not – so I 

decided to evaluate the BizAgi BPM Tools. 

 



  
                2 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

1.3 Business Process Management 
Business Process Management is a Management discipline which contains the 

Evaluation, Development, Documentation and Optimization of Business Processes. 

A Business Process describes a series of single activities which are executed step 

by step trying to reach a predefined business goal. In contrast to a project a 

process can be traversed several times. A Business process can be part of another 

business process or it can contain other business processes. A central question in 

the field of Business Process Management is “Who does what, when, how and with 

the help of what”? [Becker09][Ehlers06] The goal of business process management 

is to use existing information about the own business processes for aligning the 

strategy with the customer resulting in a better way of achieving the company 

goals. Essentially for this is to know your own business processes, to optimize 

them, to do documentation about them (maybe law dictates this), to reduce costs, 

to be as flexible as possible to transform exceptions into rules and to define clear 

interfaces between different business processes. In achieving all these goals a so 

called business process system or business process suite (sometimes also called 

workflow management system or WFMC) can support the company tremendously. 

Such a system defines, creates and manages the execution of business processes 

through the use of software, running on one or more business process engines, 

which is able to interpret the process definition, interact with the participants and, 

where required, invoke the use of IT tools and applications [Uslar04]. Deploying 

such a system should especially achieve several goals: 

 

• Decrement of processing time 

• Controlled flow of data and documents 

• Automation of activities / tasks 

• Optimization of time and resource usage 

• Abolishment of modal fragmentation 

• Creation of transparent reusable business processes 

• Systematization of activities 

• Reduction of costs caused by processes 

 

Despite the fact that a good business process system can achieve all these goals 

there are also some disadvantages arising with the introduction of such a system : 

• High initial costs [Uslar04] 

• High initial expenditure of time thru the need for education [Uslar04] 

• The company must know its processes [Uslar04] 

• Employees should accept the system [Uslar04] 

2 BizAgi 

In the following chapters you will learn more about the company BizAgi and its 

product – the BizAgi BPM Modeler / Suite. 

2.1 The company BizAgi 
The company BizAgi was founded in 1989. Its shareholders and executive all have 



 
3 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

the same objective: "Offer organizations agile and flexible solutions that enable 

them to achieve greater productivity and profitability in a modern and changeable 

business environment" [BizAgi09]. 

 

With a strong foundation in the main European and Latin American financial 

markets and more than 20 years of study and analysis of organizational processes, 

BizAgi has been able to consolidate itself as the leading BPM solution for 

automating and improving human processes using the minimum amount of 

programming. The company and its employees are 100 percent dedicated to the 

continuous improvement of the performance of the processes of their customers, 

trying to make them more productive, efficient and agile compared to their 

competitors. The principle of the company could be described as the following 

"The Process IS the Application" [BizAgi09]. 

 

The company’s Corporate Headquarter is located in the UK, St Mary´s Court - The 

Broadway - Amersham, Buckinghamshire HP7 0UT. For more information please 

refer to www.bizagi.com or mail to marketing@bizagi.com [BizAgi09].  

2.2 The product BizAgi 
BizAgi is the BPM solution enabling you and your organization to design, model, 

integrate, automate, and monitor your business processes through a graphic 

environment. It is the quickest and most efficient way to achieve continuous 

improvement of your processes.  

 

BizAgi has earned the best opinions from BPM researchers and analysts 

worldwide, thus positioning the company as a leader in this field. According to 

Enix (one of the main European BPM analysts): BizAgi offers “a fundamentally new 

level of capability not yet seen in other approaches”; likewise, Gartner, the 

worldwide renowned IT research organization considers BizAgi as a “visionary” 

solution in their BPMPP quadrant. BPMG, an important worldwide analyst in the 

subject, recognizes BizAgi as “one of the leaders in the elite group of BPM products 

for the most demanding challenges”. SODAN, an organization dedicated to IT 

research and assessment in the UK and Europe, rates us as “the most business 

oriented BPM system reviewed so far”. BizAgi’s clients, worldwide recognition of 

the solutions, the support from BizAgi’s partners, excellent teams of management 

and professional experts have made BizAgi the global leader in BPM. 

3 Workflowpatterns 

In the early beginning for Workflowmanagementsystems and Business Process 

Management Systems the systems where distributed without any conceptual basis 

which lead to huge disaffection at customer’s side. The fast changing processes in 

enterprises were to complex for the available systems – they simply couldn’t map 

them correctly. A so called Mobile Approach tried to classify requirements for 

those systems. This classification has been focused on a control flow perspective. 

Since the Mobile Approach just had a moderate success Professor van der Aalst 

and Professor Hofstede transferred the well known Design Patterns onto control 

structures in the year 1999 [Uslar04]. They both said that their work is the 

scientific answer to the concepts of company consultants to the topic 



  
                4 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Workflowmanagement. With their work the to scientists are trying to 

systematically describe business process requirements. The identified patterns – 

the so called workflowpatterns – appear very often in real life business processes. 

With these patterns consultants are able to measure whether a system is able to 

map the required patterns or not – so the patterns are a qualitative way to 

measure the possibilities of a Workflowsystem. For more information please refer 

to [Uslar04]. 

 

4 Implementation of the patterns 

In the following chapters the different patterns and their implementation in BizAgi 

is described. For each pattern there’s a general description. Furthermore there is a 

distinct Use Case from the area of Cluster Management for every pattern helping to 

create a much more realistic implementation scenario. Additionally these Use 

Cases should create a connection between theoretic science analysis and practical 

business work. 

4.1 Basic Control Flow Patterns 
This group of patterns captures elementary aspects of process control. 

 

4.1.1 Sequence (WCP 01) 

 

General Description 

Several tasks of a process are executed after each other. A task is enabled after the 

preceding task has finished and before the proceeding task has been started 

[Aalst09].  

 

Use Case 

An applicant reads the AGB and afterwards he or she decides to become a member. 

 

Implementation  

Since a sequence is standard functionality in BPMN BizAgi is naturally able to 

implement this by connecting two or more activities with a Sequence Flow arrow. 

 



 
5 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 1: Implementation of the "Sequence" pattern 

4.1.2 Parallel Split (WCP 02) 

 

General Description 

A Parallel Split is a distinct point in a business process where a single branch is 

divided into two or more parallel branches which are executed concurrently 

[Aalst09]. 

 

Use Case 

An Account manager has advertised a new member. Afterwards the manager has 

to do two things: he has to request an information brochure from the media 

department and he has to request a goody from the marketing department. 

 

Implementation 

Since a parallel split is standard functionality in BPMN BizAgi is naturally able to 

implement this by using a so called Parallel Gateway. 

 

 
Illustration 2: Implementation of the "Parallel Split" pattern 

 



  
                6 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.1.3 Synchronization (WCP 03) 

 

General Description 

A Synchronization is a distinct point in a business process where two or more 

different branches are merged into one single branch. It is called Synchronization 

because it expects all merged branches to be completed before going ahead with 

the process [Aalst09]. 

 

Use Case 

The Use case for this pattern is similar to the one presented for pattern number 

two. And Account manager has advertised a new member. Afterwards the manager 

has to do three things: he has to request an information brochure from the media 

department, he has to request a goody from the marketing department and he has 

to forward the clients core data to the office assistant. As soon as possible the 

media department sends the information brochure to the office assistant and also 

the marketing department will send the goody to the office assistant. The office 

assistant now waits for the information brochure, for the goody and for the 

account creation till she sends all the stuff to the customer. 

 

Implementation 

Since a Synchronization is standard functionality in BPMN BizAgi is naturally able 

to implement this by using a so called Parallel Gateway for merging branches. 

 

 
Illustration 3: Implementation of the "Synchronization" pattern 

 

4.1.4 Exclusive Choice (WCP 04) 

 

General Description 

An Exclusive Choice is a distinct point in a business process where a branch is 

divided into two or more branches enabling just one of these several branches 

[Aalst09]. 



 
7 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 

Use Case 

An applicant has read the AGB and decides now to become a member. He has now 

to decide whether he wants a sponsor contract or an ordinary membership 

application. Doing both is not possible. 

 

Implementation 

Since an Exclusive Choice is standard functionality in BPMN BizAgi is naturally 

able to implement this by using a so called Exclusive Gateway. Editing the 

conditions for the gateway by defining expressions is simply done by clicking on 

the gateway with the right button of the computer mouse and switching to the tab 

Advanced. 

 

 
Illustration 4: Implementation of the "Exclusive Choice" pattern 

 

4.1.5 Simple Merge (WCP 05) 

 

General Description 

A  Simple Merge is a distinct point in a business process where two or more 

branches are merged into one single branch. Each incoming branch then activates 

the subsequent branch [Aalst09]. 

 

Use Case 

The office assistant wants to make an appointment for an interview with an 

applicant by sending a proposal via e-mail. The applicant can then accept the 

appointment via phone  and/or via e-mail. The office assistant will then define 

the appointment as fixed. 

 

Implementation 

Since Simple Merge is standard functionality in BPMN BizAgi is naturally able to 

implement this by simply connecting two or more process flow arrows in one 

single activity. 

 



  
                8 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 5: Implementation of the "Simple Merge" pattern 

4.2 Advanced Branching and Synchronization Patterns 
This group presents several patterns which characterize more complex branching 

and merging concepts which arise in business processes.  

 

4.2.1 Multi-Choice (WCP 06) 

 

General Description 

The Multi-Choice pattern describes the splitting of one single branch in two or 

more parallel branches. As soon as the incoming branch is enabled the thread is 

immediately passed to one or more of the outgoing branches. Which outgaining 

branches are selected depends thereby on an internal mechanism or individual 

decision [Aalst09]. 

 

Use Case 

An applicant has read the AGB and decides now to become a member. He has now 

to decide whether he wants a sponsor contract or an ordinary membership 

application. Doing both is also possible. 

 

Implementation 

A realization of the Multi-Choice pattern is available within BizAgi. The realization 

is done via a so called Inclusive Gateway which activates one or more outgoing 

branches of the gateway. 

 



 
9 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 6: Implementation of the "Multi-Choice" pattern 

 

4.2.2 Structured Synchronizing Merge (WCP 07) 

 

General Description 

The Structured Synchronizing Merge pattern describes the merger of two or more 

branches which have been split at a uniquely identifiable point of time earlier in 

the business process into one single branch. The thread of control is passed to the 

proceeding branch as soon as all incoming branches have been enabled. This 

pattern occurs in a structured context so it is essential that there is a Single Multi-

Choice (refer to page 8) earlier in the Business Process and the Structured 

Synchronizing Merge Pattern has  to merge all of the branches emanating from the 

Multi-Choice [Aalst09]. 

 

Use Case 

This Use Case is based on the Use Case for the Multi-Choice Pattern (refer to page 

8). After an applicant has fill out the membership application and/or the sponsor 

contract (Multi-Choice) the documents are sent to an Employee for revision. The 

employee has then to revise the membership application or the sponsor contract. If 

there are both documents he has to do the revision for both of them for work 

completion. 

 

Implementation 

A realization of the Structured Synchronizing Merge pattern is available within 

BizAgi. The realization is done via a so called Inclusive Gateway for merging two or 

more branches. 

 



  
                10 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 7: Implementation of the "Structured Synchronizing Merge" pattern 

 

4.2.3 Multi Merge (WCP 08) 

 

General Description 

The Multi Merge pattern describes the convergence two or more parallel branches 

into one single branch. Special about this pattern is that each enablement of an 

incoming branch results in the activation of the proceeding activity within the 

business process [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented for the Structured Synchronizing 

Merge (refer to page 9). The Employee receives one or even two documents and 

then does a revision for each of them. 

 

Implementation 

A realization of the Multi Merge pattern is available within BizAgi. It is done by 

simply connecting the two or more branches to a proceeding single activity by the 

use of Business Flow Arrows. 

 

 
Illustration 8: Implementation of the "Multi Merge" pattern 

 



 
11 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.2.4 Structured Discriminator (WCP 09) 

 

General Description 

The Structured Discriminator pattern describes the merger of two or more 

branches into one single branch with a corresponding split beforehand somewhere 

in the business process. The thread of control is passed to the proceeding activity 

as soon as one incoming branch has been enabled regardless of the progress of the 

other incoming branches. This pattern occurs in a structured context so it is 

essential that there is one single Parallel Split construct somewhere earlier in the 

business process with which the Structured Discriminator is associated. The 

Structured Discriminator must merge all of the branches coming from the split 

[Aalst09]. 

 

Use Case 

The marketing department has just one advertising space available on an event. 

The marketing department then tries to find a customer for this ad space on two 

different channels - the internet and the daily newspaper. As soon as one customer 

books the advertising space it doesn't matter what the other customers in the two 

advertising channels do. The contract gets signed and the ad space is booked from 

the customer. 

 

Implementation 

Although BPMN supports this pattern according to the BPMN definition it is 

unclear how the incoming Condition express on the COMPLEX-join gateway should 

be specified. However the described Use Case can be modeled through a work-

around using several splits, merges and loops. 

4.2.5 Blocking Discriminator (WCP 28) 

 

General Description 

The Blocking Discriminator Pattern describes the fusion of two or more individual 

branches into one single branch with corresponding antecedent divergences. The 

outgoing branch of the Blocking Discriminator is activated as soon as the first 

incoming branch has been enabled regardless of the state of the other branches. 

The pattern resets itself as soon as all active incoming branches have been enabled 

once for the same process instance. All subsequent enablements of incoming 

branches are blocking until reset [Aalst09]. 

 

Use Case 

The Use Case for the Blocking Discriminator is similar to the one presented for the 

Structured Discriminator (WCP 09, please refer to page 11). The marketing 

department has again just one advertising space available on an event and they try 

to find a customer for this via internet and daily newspaper. The difference in this 

Use Case is that after the successful booking of the advertising space the marketing 

department has to wait until the customer has used both channels (internet and 

newspaper). This will help the marketing department in doing detailed analysis 

about the efficiency of the different channels. 

 

 



  
                12 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Implementation 

Although BPMN supports this pattern according to the BPMN definition it is 

unclear how the incoming Condition express on the COMPLEX-join gateway should 

be specified. However the described Use Case can be modeled through a work-

around using several splits, merges and loops. 

4.2.6 Cancelling Discriminator (WCP 29) 

 

General Description 

The Cancelling Discriminator Pattern describes merging two or more branches 

into one single subsequent branch with corresponding divergences beforehand. 

The thread of control is passed to the outgoing branch as soon as the first incoming 

branch has been enabled. All other incoming branches are canceled regardless of 

their current state [Aalst09]. 

 

Use Case 

The Use Case for the Cancelling Discriminator is similar to the one presented for 

the Structured Discriminator (WCP 09, please refer to page 11). The marketing 

department has again just one advertising space available on an event and they try 

to find a customer for this via internet and daily newspaper. The difference in this 

Use Case is that after the reservation of the ad space trough one of the two 

channels the other channel will be closed so that there is no way of doing another 

reservation trough the closed channel. 

 

Implementation 

This pattern / Use Case is available within BizAgi. It is done by including the 

incoming branches and the OR-join in a sub process which passes control to the 

proceeding activity once the first branch has completed. Additionally there is an 

error type intermediate event required for cancelling the remaining activities. 

 

 
Illustration 9: Implementation of the "Cancelling Discriminator" pattern 

 

4.2.7 Structured Partial Join (WCP 30) 

 

General Description 

The Structured Partial Join Pattern is about the convergence of two or more (let's 



 
13 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

pretend m) branches into one single subsequent branch with corresponding splits 

somewhere earlier in the business process. The thread of control is passed to the 

subsequent branch of the pattern as soon as n incoming branches (n is less than m) 

are enabled. All other k incoming branches afterwards (k = m - n) do not result in 

the thread of control being passed on. The pattern resets itself as soon as all active 

incoming branches have been enabled. The pattern occurs in a structured context 

which means that there must be a single Parallel Split pattern somewhere earlier 

in the business process and the Join must merge all of the branches emanating 

from the Parallel Split [Aalst09]. 

 

Use Case 

This Use Case is again the area of booking advertising spaces. The marketing 

department now has three different channels for promoting an ad space - daily 

newspaper, internet and phone. The phone is used by the employees of marketing 

trying to call former customers. As soon as the employees have offers trough two 

of the three channels they can decide who to choose. The third channel is then 

irrelevant. 

 

Implementation 

Although BPMN supports this pattern according to the BPMN definition it is 

unclear how the incoming Condition express on the COMPLEX-join gateway should 

be specified. However the described Use Case can be modeled in BizAgi with a 

work-around using several splits, merges and loops. 

 

4.2.8 Blocking Partial Join (WCP 31) 

 

General Description 

The Blocking Partial Join Pattern describes the fusion of two or more branches 

(let's pretend again m) into one single following branch with corresponding 

divergences somewhere earlier in the business process. The thread of control is 

passed to the outgoing branch as soon as n (n is less than m) incoming branches 

has been enabled. The join resets itself as soon as all active incoming branches 

have been enabled once for the same process instance. All other subsequent 

enabled activities are blocked until the join is reset [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented for WCP 28 (Blocking Discriminator, 

please refer to page 11). The difference is that there are three channels (phone, 

daily newspaper and internet) and the decision is made as soon as there are offers 

on two of the three channels. 

 

Implementation 

Although BPMN supports this pattern according to the BPMN definition it is 

unclear how the incoming Condition express on the COMPLEX-join gateway should 

be specified. However the described Use Case can be modeled in BizAgi with a 

work-around using several splits, merges and loops. 

 

 



  
                14 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.2.9 Cancelling Partial Join (WCP 32) 

 

General Description 

This pattern is a adaption of WCP 31 (Blocking Partial Join) described beforehand. 

The Cancelling Partial Join also describes the convergence of two or more branches 

(let's pretend m again) into one single outgoing branch with corresponding 

divergences beforehand in the business process. The thread of control is passed to 

the outgoing branch of the join as soon as n (with n less than m) incoming 

branches have been enabled. As soon as the outgoing branch is enabled all other 

incoming branches are cancelled regardless of their current state and the join is 

reset [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented for WCP 29 (Cancelling Discriminator, 

please refer to page 12). The difference is that there are three channels (phone, 

daily newspaper and internet) and the decision is made as soon as there are offers 

on two of the three channels. 

 

Implementation 

Although BPMN supports this pattern according to the BPMN definition it is 

unclear how the incoming Condition express on the COMPLEX-join gateway should 

be specified. However the described Use Case can be modeled in BizAgi with a 

work-around using several splits, merges and loops. 

 

4.2.10 Generalized AND-Join (WCP 33) 

 

General Description 

The Generalized AND-Join pattern describes merging tow ore more branches into 

one single outgoing branch. The thread of control is passed by as soon as all 

incoming branches have been enabled [Aalst09]. 

 

Use Case 

The Use Case for this pattern is the same as for pattern number 03 

(Synchronization, please refer to page 6). And Account manager has advertised a 

new member. Afterwards the manager has to do three things: he has to request an 

information brochure from the media department, he has to request a goody from 

the marketing department and he has to forward the clients core data to the office 

assistant. As soon as possible the media department sends the information 

brochure to the office assistant and also the marketing department will send the 

goody to the office assistant. The office assistant now waits for the information 

brochure, for the goody and for the account creation till she sends all the stuff to 

the customer. 

 

Implementation 

You can easily realize this pattern in BizAgi by using a so called Parallel Gateway 

for merging branches. 

 



 
15 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 10: Implementation of the "Generalized AND-Join" pattern 

 

4.2.11 Local Synchronizing Merge (WCP 37) 

 

General Description 

This pattern describes the convergence of two or more singles branches which 

split earlier in the business process into one single outgoing branch. The thread of 

control is passed to the subsequent branch as soon as each active incoming branch 

has been enabled. Determination of how many branches require synchronization is 

made on the basis on information locally available to the merge construct. This 

may be communicated directly to the merge by the preceding diverging construct 

or alternatively it can be determined on the basis of local data such as the threads 

of control arriving at the merge [Aalst09].  

 

Use Case 

The Use Case for the Local Synchronizing Merge is the following: the marketing 

department has three ad spaces available for their customers - the promotion of 

these three spaces is done via phone, internet and daily newspaper. If the 

marketing department decides to promote the spaces via internet or phone both 

channels need to be synced. If marketing decides to use the daily newspaper as 

promotion channel they can decide later whether they have to sync the channels or 

not. So it is possible that there is no valid offer through the newspaper channel. 

 

Implementation 

This pattern is available within BizAgi by using an Inclusive Gateway for merging. 

Important for this pattern is, that the gateway is used in a structured context. 

 



  
                16 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 11: Implementation of the "Local Synchronizing Merge" pattern 

 

4.2.12 General Synchronizing Merge (WCP 38) 

 

General Description 

The General Synchronizing Merge pattern describes merging two or more 

branches which diverged earlier in the business process into one single outgoing 

branch. The thread of control is passed to the subsequent branch as soon as either 

each active incoming branch has been enabled or as soon as it is evident that there 

is no other branch which hasn't yet been enabled that will be enabled in future 

[Aalst09]. 

 

Use Case 

This Use Case is very similar to the one presented for the Local Synchronizing 

Merge Pattern (WCP 37, please refer to page 15) before. The difference is that the 

marketing department is able to initiate the newspaper channel several times. 

 

Implementation 

This pattern is not directly supported within BizAgi because there is no way of 

assessing whether an Inclusive gateway should fire based on a complete state 

analysis of the process instance. However the describes Use Case can be modeled 

via a work-around using several splits, merges and loops. 

 

4.2.13 Thread Merge (WCP 41) 

 

General Description 

The Thread Merge pattern describes a particular point of time in a business 

process where a distinct number of execution threads in single branches within the 

same process instance should be merged into one single thread of execution 

[Aalst09]. 

 

Use Case 

The pattern for this Use Case is about testing several applicants. As soon as twenty 



 
17 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

applicants confirmed their participation in the test, the Test Coordinator can start 

with the preparation. 

 

Implementation 

You can implement this Use Case / pattern in BizAgi by adding a Multiple Instances 

Activity and afterwards a normal activity.  

 

 
Illustration 12: Implementation of the "Thread Merge" pattern 

Simply Chance the Start Quantity of the normal activity to 20 or your desired value. 

You can edit the Start Quantity Value by doing a right click on the activity (or 

pressing F4) and selecting the Advanced Tab in the Element properties box. 



  
                18 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 13: Required properties settings for the "Thread Merge" pattern 

4.2.14 Thread Split (WCP 42) 

 

General Description 

The Thread Split pattern describes a particular point of time in a business process 

where a nominated number of execution threads can be initiated in a single branch 

of the same process instance [Aalst09]. 

 

Use Case 

The Use Case for this pattern is quasi the prosecution of the Use Case presented for 

WCP 41 (Thread Merge, please refer to page 16). After the test is done all twenty 

tests need to be revised. The way the revision is done is always the same. 

 

Implementation 

There are two ways to implement this Use Case in BizAgi. 

 

1. You create two normal activities and change the Completion Quantity value 

of the second activity to 20 (or your desired value). This will cause that the 

Thread of control is passed to the preceding activity as soon as 20 instances 



 
19 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

have arrived.  

 

Illustration 14: Implementation of the "Thread Split" pattern using a basic activity and the 

"Completion Quantity" value 

You can edit the Completion Quantity Value by doing a right click on the 

activity and switching to the Advanced Tab in the properties box. 

 

 

Illustration 15: Required properties settings for WCP 42 

 



  
                20 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

2. You can arrange the second activity as a Multiple Instances Activity defining 

that there are 20 different activities. 

 

 

Illustration 16: Implementation of the "Thread Split" pattern using a MI activity 

4.3 Multiple Instance Patterns 
This group describes patterns with multiple active threads in a process flow which 

relate to the same activity. Multiple instances can arise trough three different 

reasons:  

1. An activity is able to initiate multiple instances of itself 

2. An activity is initiated multiple times as a consequence of receiving several 

independent triggers for example as a part of a loop 

3. Two or more activities in a process share the same implementation 

definition 

4.3.1 Multiple Instances without Synchronization (WCP 12) 

 

General Description 

The pattern 12 describes that each multiple instance task that is created must be 

executed within the context of the process instance from which they were started 

and each of them must be executed independently from and without reference to 

the task that started them [Aalst09]. 

 

Use Case 

Every month at the distinct point of time the IT Department changes the W-Lan 

Access Key and sends the new key to all employees via email. These then have to 

change the key manually on their local PC/laptop - the IT department is no longer 

involved. 

 

Implementation 

This pattern is available within the BizAgi Suite. Simply create a Multiple Instances 

Activity and set the MI Ordering to Parallel and the MI Flow Condition to None.  

 



 
21 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 17: Implementation of the "Multiple Instances without Synchronization" pattern 

 

You can edit those values by doing a right click on the MI activity (or simply 

pressing F4 on the keyboard) and switching to the Advanced tab in the properties 

box. 

 

 
Illustration 18: Menu for the right click on an activity 

 



  
                22 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 19: Properties window for an activity with the required settings 

 

 

 

 

4.3.2 Multiple Instances with a Priori Design-Time Knowledge (WCP 13) 

 

General Description 

This pattern describes that a given number of instances are independent of each 

other and are run concurrently. It is necessary to synchronize the different task 

instances after completion before any subsequent tasks can be enabled [Aalst09]. 

 

Use Case 

There's an event coming soon. The number of participants is known beforehand. 

The Office sends an invitation to each of the twenty participants. As soon as all of 

them have replied to the invitation the Office can continue the event preparation. 

 

Implementation 

You can realize this pattern in BizAgi by using a Multiple Instances activity. Simply 

change die MI Ordering to Parallel, the MI Flow Condition to All and the 

Completion Quantity to 20.  

 



 
23 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 20: Implementation of the "Multiple Instances with a Priori Design-Time Knowledge" 

pattern 

You can edit all these values by doing a right click on the activity (or pressing F4 on 

your keyboard) and switching to the Advanced tab in the properties box. 

 

 
Illustration 21: Required properties settings for WCP 13 

 

 



  
                24 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.3.3 Multiple Instances with a Priori Run-Time Knowledge (WCP 14) 

 

General Description 

This pattern is similar to WCP 13. The only difference is that the amount of 

instances is not known beforehand but during execution before the task instances 

must be created. It is necessary to synchronize the different task instances after 

completion before any subsequent tasks can be enabled [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented before for WCP 13. The only 

difference is that the amount of messages sent out by the office is not known 

beforehand but dynamically during the planning phase. 

 

Implementation 

You can realize this Use Case with an Multiple Instance activity. Change the value 

of MI Ordering to Parallel, the Flow Condition to Complex and define a complex 

mutable Condition on the MI Instance.  

 

 
Illustration 22: Implementation of the "Multiple Instances with a Priori Run-Time Knowledge" pattern 

You can change these values by simply doing a right click on the activity and 

switching to the Advanced tab of the properties box. 

 



 
25 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 23: Required properties settings for WCP 14 

 

 

 

4.3.4 Multiple Instances without a Priori Run-Time Knowledge (WCP 15) 

 

General Description 

This pattern is similar to WCP 13. The only difference is that the amount of 

instances is not known until the final instance has completed. At any time, whilst 

instances are running, it is possible for additional instances to be initiated. It is 

necessary to synchronize the instances at completion before any subsequent tasks 

can be triggered [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented before for WCP 14. The only 

difference is that the Office continues inviting people until the required amount of 

participants has been reached. 

 

Implementation 

This pattern is not supported by BizAgi because there is no way of adding a 

dynamic number of further instances to a Multiple Instance activity when the MI 

activity already has been started. 



  
                26 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.3.5 Static Partial Join for Multiple Instances (WCP 34) 

 

General Description 

This pattern describes that within a given process instance, multiple concurrent 

instances of a task let's pretend m) can be created. Once n of the task instances 

have completed (where n is less than m), the next task in the process is triggered. 

Subsequent completions of the remaining m-n instances are inconsequential, 

however all instances must have completed in order for the join construct to reset 

and be subsequently re-enabled [Aalst09]. 

 

Use Case 

A questionnaire is sent out to a fixed number (let's pretend m) of members. The 

Office waits now for at least n (n is less than m) replies to this questionnaire before 

they can start with the evaluation. 

 

Implementation 

In theory this pattern is supported in BizAgi by using multiple instance activities. 

Change the MI Ordering to Parallel, the MI Flow Condition to Complex and enter an 

expression that evaluates to true when exactly M instances have completed for the 

Condition. You can find all these values by simply doing a right click on the 

multiple instance activity and switching to the tab Advanced. However it is unclear 

how the Condition for the Complex Flow should be exactly specified. 

4.3.6 Cancelling Partial Join for Multiple Instances (WCP 35) 

 

General Description 

This pattern is very similar to WCP 34 (please refer to page 25). The only 

difference is that as soon as n task instances have been completed the preceding 

task in the business process is enabled and the remaining k tasks (k = m - n) are 

cancelled and withdrawn [Aalst09]. 

 

Use Case 

An invitation about a work outing to Italy is sent out to a fixed number (let's 

pretend m) of members. In the invitation it is mentioned that there are only n (n is 

less than m) spaces available and that the registration process is FCFS (first come 

first serve). As soon as all spaces are occupied all other members are informed that 

they can no longer participate in the work outing. 

 

Implementation 

In theory this pattern is supported in BizAgi by using multiple instance activities. 

Change the MI Ordering to Parallel, the MI Flow Condition to Complex and enter an 

expression that evaluates to true when exactly M instances have completed for the 

Condition. You can find all these values by simply doing a right click on the 

multiple instance activity and switching to the tab Advanced. Additionally an error 

type intermediate event trigger at the boundary of the MI activity is required 

which will terminate any remaining MI activities after a cancel event. However it is 

unclear how the Condition for the Complex Flow should be exactly specified. 

 

 



 
27 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.3.7 Dynamic Partial Join for Multiple Instances (WCP 36) 

 

General Description 

This pattern describes that within a given process instance, multiple concurrent 

instances of a task can be created. The required number of instances may depend 

on a number of runtime factors and is not known until the final instance has 

completed. At any time, whilst instances are running, it is possible for additional 

instances to be initiated. A completion condition is specified which is evaluated 

each time an instance of the task completes. Once the completion condition 

evaluates to true, the preceding task in the process is triggered regardless of the 

state of the remaining task instances [Aalst09].  

 

Use Case 

The Development department has a problem and it commissions a dynamic 

number of developers to solve this problem. If one of the developers submits a 

solution the team leader decides whether this solution is sufficient or not. As long 

as there is no solution which satisfies the team leader 100 percent all other 

developers can submit their solutions and other developers can be hired. However 

the management can declare a hiring freeze resulting in a constant number of 

developers. The developers who have already been hired however can continue 

their work on finding a solution for the problem. 

 

Implementation 

This pattern is not supported by BizAgi because there is no way of adding a 

dynamic number of further instances to a Multiple Instance activity when the MI 

activity already has been started. However the describes Use Case can be modeled 

via a work-around using several splits, merges and loops. 

 

 

4.4 State-based Patterns 
The group of state-based patterns reflects situations for which solutions are most 

easily accomplished by the notion of states. 

 

4.4.1 Deferred Choice (WCP 16) 

 

General Description 

The Deferred Choice pattern describes the individual selected of one branch from 

several branches. The decision is based on interaction with the environment 

[Aalst09]. 

 

Use Case 

An applicant has read the AGB and decides now to become a member. He has now 

to decide whether he wants a sponsor contract or an ordinary membership 

application. Doing both is not possible. The decision is manual. 

 

Implementation 

This pattern is supported by BizAgi by using an event-based exclusive gateway. 



  
                28 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Subsequent to this gateway there is either an intermediate event using message-

based triggers or a receive task required. 

 

 
Illustration 24: Implementation of the "Deferred Choice" pattern 

 

4.4.2 Interleaved Parallel Routing (WCP 17) 

 

General Description 

The Interleaved Parallel Routing pattern describes a set of tasks with a partial 

ordering. Each task in the set must be completed once and they can be executed in 

any order that fits with the partial order. Additionally the tasks cannot be executed 

at the same time [Aalst09]. 

 

Use Case 

The manager of the education department informs the employee that he or she 

should do three different phases during the aptitude test. A psychological test, an 

intelligence test and a round of introduction. The order in which the three phases 

are accomplished is relevant. The intelligence test must be revised before doing 

the psychological test. The round of introduction can be accomplished as first 

phase, as last phase or also in the middle of the other two phases. However you are 

not allowed to do two phases at the same time. 

 

Implementation 

This pattern is partly supported by BizAgi. For simple tasks you can use an ad-hoc 

process but for interleaving groups or sequences of tasks there is no support. 

However the describes Use Case can be modeled via a work-around using several 

splits, merges and loops. 

 

4.4.3 Milestone (WCP 18) 

 

General Description 

This pattern defines that an activity can only be enabled when the process instance 

is in a specific state. This state is assumed to be a specific execution point (also 

known as a milestone) in the business process. As soon as this point has been 



 
29 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

reached the nominated task can be enabled. If the current state is already beyond 

this state the task cannot be enabled any longer (e.g. a deadline has expired) 

[Aalst09]. 

 

Use Case 

In a project the employees have to do a documentation and a presentation. If the 

presentation is ready they can wait until the documentation is ready for refining 

the presentation. If the documentation has been sent to the manager (before or 

after completing the presentation) there is no further chance of editing the 

presentation. 

 

Implementation 

This pattern is not supported in BizAgi. 

 

4.4.4 Critical Section (WCP 39) 

 

General Description 

The Critical Section pattern describes that two or more connected sub-processes 

are identified as critical sections. When one of these critical sections is active - 

which means that an activity inside this section is enabled - no other critical 

section can be activated. The business process waits for completion or halting one 

critical section to be able to activate another critical section [Aalst09]. 

 

Use Case 

Two administrators have to access a server for changing some settings. As long as 

one admin is currently on the server there is no chance for the other admin to 

access the server too. He or she has to wait until the other admin has left the 

server. 

 

Implementation 

This pattern is not directly supported in BizAgi because there is no way to limit the 

concurrent execution of a set of activities. However the describes Use Case can be 

modeled via a work-around using several splits, merges and loops. 

4.4.5 Interleaved Routing (WCP 40) 

 

General Description 

This pattern describes that each member of a set of tasks must be executed once. 

They can be executed in any order but at no point of time two or more tasks can be 

executed simultaneously. Once all of the tasks have completed, the next task in the 

process can be initiated [Aalst09].  

 

Use Case 

This Use Case is similar to the one presented for WCP 17. The difference is that the 

order in which the three phases are accomplished is no longer relevant but you are 

not allowed to do two phases at one single point of time. 

 

Implementation 

This pattern is partly supported by BizAgi via a so called ad-hoc process. This ad-



  
                30 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

hoc process should contain all of the activities interleaved. The AdHocOrdering 

must be set to Sequential and there needs to be a CompletionCondition defined. 

You can change these values by simply doing a right click on the activity and 

switching to the Advanced tab. Unfortunately it is unclear how the required 

CompletionCondition should look like to ensure that each activity has been 

executed exactly once. However the describes Use Case can be modeled via a work-

around using several splits, merges and loops. 

 

 
Illustration 25: Implementation of the "Interleaved Routing" pattern using an Ad-Hoc activity 

 

 

 

 

 

4.5 Cancellation and Force Completion Patterns 
The patters in this group utilize the concept of cancelling or withdrawing activities. 

 

4.5.1 Cancel Task (WCP 19) 

 

General Description 

The Cancel Task pattern describes the possibility or canceling or withdrawing an 

enabled task. If the task has already started it is disabled and the currently running 

instance is halted and removed [Aalst09]. 

 

Use Case 

The Office Assistant creates a PowerPoint presentation for a manager. If the 

manager sends a message that the presentation is no longer required the assistant 

stops working on the presentation continuing with the normal work. 



 
31 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Implementation 

You can realize this Use Case by adding an attached error event to the Create 

Presentation Activity. When triggered the error event then leads to the Go ahead 

without presentation activity. 

 

 
Illustration 26: Implementation of the "Cancel Task" pattern 

 

4.5.2 Cancel Case (WCP 20) 

 

General Description 

The Cancel Case pattern describes the removal of a complete process instance. This 

includes currently running tasks as well as those which may be executed at some 

time in future. Additionally all sub-processes are also removed and the process 

instance is regarded as having completed without success [Aalst09]. 

 

Use Case 

This Use Case is an extension of the Use Cases presented for WCP 06 and WCP 07 

(please refer to page 8 and 9). An Applicant has read the AGB and decides to 

become a member. He or she can do this by signing a sponsor contract and/or a 

membership application. After submitting his date the applicant might change his 

or her mind and cancel his or her application. 

 

Implementation 

This pattern is available in BizAgi by including the entire process in a sub process 

and adding a cancel type intermediate event trigger at the boundary of the sub 

process.  This event will terminate all activities associated with a process instance. 

 



  
                32 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 27: Implementation of the "Cancel Case" pattern 

 

4.5.3 Cancel Region (WCP 25) 

 

General Description 

This pattern describes the ability to disable a whole set of tasks in a process 

instance. If any of the nominated tasks is already executed or enabled then it is 

withdrawn. The set of tasks does not need to be a connected subset of the overall 

business process [Aalst09]. 

 

Use Case 

This Use Case is similar to the one presented for the Cancel Case pattern (WCP 20, 

please refer to page 30). If the applicant changes his or her mind he or she just 

wants to cancel the sponsor contract. 

 

Implementation 

This pattern is supported by enclosing the cancellation region in a sub process and 

adding a cancel type intermediate event trigger at the boundary of the sub process. 

This event will terminate all activities associated with a process instance. The only 

limitation is that the cancellation region must be a connected sub graph of the 

overall business process. 

 



 
33 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 28: Implementation of the "Cancel Region" pattern 

 

4.5.4 Cancel Multiple Instance Activity (WCP 26) 

 

General Description 

The Cancel Multiple Instance Task pattern describes the ability of cancelling a 

whole Multiple Instance task by withdrawing all instances which have not yet been 

completed. All others - already completed - are not affected [Aalst09]. 

 

Use Case 

This Use Case is based on the Use Case described for WCP 36 (please refer to page 

26). It describes that the management decides to cancel the whole project while 

several developers are working on a solution. 

 

Implementation 

This pattern is realizable in BizAgi by using a Multiple Instance activity with an 

error type intermediate event trigger at the boundary. As soon as the MI activity is 

to be withdrawn, a cancel event is triggered to terminate any remaining MI 

activities. 

 

 
Illustration 29: Implementation of the "Cancel Multiple Instance Activity" pattern 

 



  
                34 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

4.5.5 Complete Multiple Instance Activity (WCP 27) 

 

General Description 

The Complete Multiple Instance Task pattern describes the possibility of enforcing 

the completion of remaining instances within a Multiple Instance activity by 

withdrawing any remaining instances and passing the thread of control to the 

subsequent task [Aalst09]. 

 

Use Case 

This Use Case is based on the Use Case described mentioned for WCP 14 (please 

refer to page 23). The Use Case describes that the employees can continue directly 

with the event planning with no regard on the number of received answers. 

 

Implementation 

This pattern is realizable in BizAgi by using a Multiple Instance activity with an 

error type intermediate event trigger at the boundary. As soon as the MI activity is 

to be withdrawn, a cancel event is triggered to terminate any remaining MI 

activities. 

 

 
Illustration 30: Implementation of the "Complete MI Activity" pattern 

4.6 Iteration Patterns 
The patterns within the group Iterations patterns deal with capturing repetitive 

behavior in a business process. 

4.6.1  Arbitrary Cycles (WCP 10) 

 

General Description 

The Arbitrary Cycles pattern describes a distinct point in a business process in 

which one or more activities are repeated several times. Special about these loops 

is that they have more than one entry or exit point. It must be possible for 

individual entry and exit points to be associated with distinct branches [Aalst09]. 

 

Use Case 

An employee has a meeting with a customer. If the requirements of the customer 

are not feasible start the meeting again and try to find other requirements. If there 

is a possibility to implement the requirements the employee starts implementing 



 
35 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

them and tests them. If the tests are successful the business process is completed. 

If the tests are not successful the employee tries to find out if there is another way 

of implementing the requirements. If yes he tries the new way and tests them. If 

not the employee has to set up a new appointment with the customer trying to 

change the requirements. 

 

Implementation 

There is no particular BPMN element within BizAgi for Arbitrary Cycles but you 

can easily adopt this pattern by using basic splits, merges and control expressions. 

 

 
Illustration 31: Implementation of the "Arbitrary Cycles" pattern 

 

4.6.2 Structured Loop (WCP 21) 

 

General Description 

The Structured Loop pattern describes the possibility of executing an activity or 

sub-process repeatedly. This loop has either a pre-test or a post-test condition 

which means that the condition is either evaluated at the beginning or the end of a 

loop. The loop itself has a single entry point and a single exit point. The pattern 

itself consists of three possibilities: the normal one, the pre-test one and the post-

test one [Aalst09]. 

Since the pattern consists of three parts there are three different Use Cases and 

Implementations. 

4.6.2.1 Normal 

 

Use Case 

The Office begins with the Education phase. Therefore it sends different mappings 

to a company and the company replies saying yes or no to this mapping. If the 

answer is "OK" the process is completed. If the answer is "No interest" the office 

has to change to application and start again with the Education phase.  

 

Implementation 

You can easily realize this Use Case by using basic activities in BizAgi. 

 



  
                36 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 32: Implementation of the "Structured Loop" pattern 

 

4.6.2.2 Post 

 

Use Case 

The Office receives a task from a customer. They not start working and 

implementing the task. If the customer is satisfied the process is completed. If not 

the office has to work and implement again. 

 

Implementation 

In BizAgi you can realize Structured Loops with a Post Evaluation of the Condition 

easily by transforming a basic activity into a Standard Loop.  

 

 
Illustration 33: Implementation of the "Structured Loop" pattern with Post Evaluation 

 

Additionally you have to set the Test Time Value (under Properties, Advanced) to 

After.  

 



 
37 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 34: Required properties for the realization of the "Structured Loop" pattern with Post 

Evaluation 

 

Alternatively you can also model this process by using basic activities like splits 

and merges. 

 

 
Illustration 35: Alternative Implementation of the "Structured Loop" pattern with Post Evaluation 

4.6.2.3 Pre 

Use Case 

The Office starts a new project. First of all they have to check if there is enough 

memory available on the server for this project. If yes the process is completed. If 



  
                38 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

not they have to order additional memory, install the memory and determine again 

if the available memory is enough. 

 

Implementation 

In BizAgi you can realize Structured Loops with a Pre Evaluation of the Condition 

easily by transforming a basic activity into a Standard Loop.  

 

 
Illustration 36: Implementation of the "Structured Loop" pattern with Pre Evaluation 

Additionally you have to set the Test Time Value (under Properties, Advanced) to 

Before. In this example the Loop is additionally an embedded sub process because 

you have to loop two activities at the same time.  

 

 
Illustration 37: Required properties for the realization of the "Structured Loop" pattern with Pre 

Evaluation 



 
39 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Alternatively you can also model this process by using basic activities like splits 

and merges. 

 

 
Illustration 38: Alternative Implementation of the "Structured Loop" pattern with Pre Evaluation 

 

4.6.3 Recursion (WCP 22) 

 

General Description 

The Recursion pattern describes the ability of a task of invoking itself in terms of 

the overall decomposition structure with which it is associated [Aalst09]. 

 

Use Case 

An employee of HR is doing dossiers of incoming application. The employee 

continues doing this until he or she has twenty dossiers or until the management 

sets a deadline for the application. However after the process exits the loop (it 

doesn't matter if this happens regularly or because of a deadline) the HR employee 

plans an appointment and sends this appointment for each dossier to the 

corresponding applicant. 

 

Implementation 

This pattern is not directly supported within BizAgi because there is no way of 

specifying recursive composition with a business process model. However the 

describes Use Case can be modeled via a work-around using several splits, merges 

and loops. 

 

4.7 Termination Patterns 
All patterns belonging to the Termination Patterns area dealing with the issue 

under which circumstances a business process can be considered as completed. 

4.7.1 Implicit Termination (WCP 11) 

 

General Description 

The Implicit Termination pattern describes that a business process should 

terminate as soon as there are no more remaining items than can be processed and 

the process itself is not deadlocked [Aalst09]. 



  
                40 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Use Case 

For this Use case we take a look at the hardware ordering process. The inventory 

department receives a request for a new hardware. An employee of this 

department then sends the new hardware to the computing centre and a bill to the 

accounting. The process is finished or terminated as soon as the new hardware has 

been installed and the bill has been booked. 

 

Implementation 

This pattern can be realized in BizAgi by simply adding two or more End Events to 

the process with several incoming branches and no outgoing branches. The BizAgi 

Suite will consider the whole business process as finished as soon as all End Events 

are enabled. 

 

 
Illustration 39: Implementation of the "Implicit Termination" pattern 

4.7.2 Explicit Termination (WCP 43) 

 

General Description 

The Explicit Termination pattern defines that a process should terminate as soon 

as it reaches a nominated state, typically denoted by a specific end node. Wehn this 

end node is reached by any active process path the whole process is regarded as 

completed. Any remaining work is canceled [Aalst09]. 

 

Use Case 

Let's assume a server is not working properly. The computing centre requests 

support from  the Engineering team and the development team which both do 

analyze the error. As soon as one team have found and solved the error, the whole 

business process is completed regardless of the progress of the other team. 

 

Implementation 

This pattern can be realized in BizAgi by using an End Event in the business 

process with several incoming branches and no outgoing branches. The BizAgi 

Suite will consider the whole business process as finished as soon as this End 

Event is enabled. 

 



 
41 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

 
Illustration 40: Implementation of the "Explicit Termination" pattern 

4.8 Trigger Patterns 
The last group Trigger Patterns deals with external signals that may be required to 

start certain tasks. 

4.8.1 Transient Trigger (WCP 23) 

 

General Description 

The transient trigger pattern describes that a task can be triggered by a signal from 

other parts of the process or an external event. These triggers are transient in 

nature and are lost if not acted on immediately by the receiving task. A trigger can 

only be utilized if there is a task instance waiting for it at the time it is received 

[Aalst09]. 

 

Use Case 

In a company the secretary catches the manager's mail two times a day. When the 

secretary is passing by the manager's office and the manager has not yet 

completed his reports, the secretary simply passes by. If the manager has 

completed the reports the secretary  will them with her. 

 

Implementation 

There is no distinct symbol or way in BizAgi to implement this pattern. However it 

is possible to model the above mentioned Use Case by using basic activities and 

basic splits and merges. 

4.8.2 Persistent Trigger (WCP 24) 

 

General Description 

The persistent trigger pattern describes that a task can be triggered by a signal 

from other parts of the process or an external event. These triggers are persistent 

in form and are retained by the process until they can be acted on by the receiving 

task. 

 

 



  
                42 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Use Case 

A Developer from the Development Department starts a new project. He therefore 

requests the required server capacity and develops the software. During or after 

the development he or she has to wait for a message (event) that the server 

capacity is available. After receiving this event the developer can do the project 

test and product rollout. 

 

Implementation 

In BizAgi this pattern is realized via a message event connected to a preceding and 

proceeding activity. The business process is then halted until the message is 

received. 

 

 
Illustration 41: Implementation of the "Persistent Trigger" pattern 

5 Conclusion 

In this chapter you will get a short overview of the results of my assignment 

including a wrap up and a further forecast. 

 

5.1 Overview about the results 
In this table you can get a short overview about the possible implementation of the 

different 43 patterns. The symbol + (green) represents direct support, the symbol 

+/- (yellow) represents an indirect support via a work around and the symbol - 

(red) represents that the pattern is not supported.  

 

5.1.1 Basic Control Flow Patterns 

 

Pattern Result Refer to… 

Sequence + page 4 

Parallel Split + page 5 

Synchronization + page 6 

Exclusive Choice + page 6 

Simple Merge + page 7 

 

 

 



 
43 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

5.1.2 Advanced Branching and Synchronization Patterns 

 

Pattern Result Refer to… 

Multi-Choice + page 8 

Structured Synchronizing 

Merge 

+ page 9 

Multi Merge + page 10 

Structured Discriminator +/- page 11 

Blocking Discriminator +/- page 11 

Cancelling Discriminator + page 12 

Structured Partial Join +/- page 12 

Blocking Partial Join + page 13 

Cancelling Partial Join + page 13 

Generalized AND Join + page 14 

Local Synchronizing 

Merge 

+ page 15 

General Synchronizing 

Merge 

+/- page 16 

Thread Merge + page 16 

Thread Split + page 18 

 

5.1.3 Multiple Instance Patterns 

 

Pattern Result Refer to… 

MI without 

Synchronization 

+ page 20 

MI with a priori Design 

Time Knowledge 

+ page 22 

MI with a priori Runtime 

Knowledge 

+ page 23 

MI without a priori 

Runtime Knowledge 

- page 25 

Static Partial Join for MI - page 25 

Cancelling Partial Join for 

MI 

- page 25 

Dynamic Partial Join for 

MI 

+/- page 26 

 

 

 

 

 

 

 

 

 

 

 



  
                44 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

5.1.4 State-based Patterns 

 

Pattern Result Refer to… 

Deferred Choice + page 27 

Interleaved Parallel 

Routing 

+/- page 27 

Milestone - page 28 

Critical Section +/- page 28 

Interleaved Routing +/- page 29 

 

5.1.5 Cancellation and Force Completion Patterns 

 

Pattern Result Refer to… 

Cancel Task + page 30 

Cancel Case + page 30 

Cancel Region +/- page 31 

Cancel MI activities + page 32 

Complete MI activities + page 33 

 

5.1.6 Iteration Patterns 

 

Pattern Result Refer to… 

Arbitrary Cycles + page 33 

Structured Loop + page 34 

Recursion +/- page 38 

 

5.1.7 Termination Patterns 

 

Pattern Result Refer to… 

Implicit Termination + page 38 

Explicit Termination + page 39 

 

5.1.8 Trigger Patterns 

 

Pattern Result Refer to… 

Transit Triggers +/- page 40 

Persistent Triggers + page 41 

 

5.2 Wrap Up 
As seen the BizAgi Suite is a real powerful software application. The product is able 

to map 28 patterns directly, other 11 are map able with a small work around and 

only four patterns are not included. Seeing this result it is obvious and also 

comprehensible why BizAgi is so much accepted on the market and the product 

has proven that it is rightly called as one of the best BPM tools in the market.  



 
45 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Further conclusion of this assignment is that – in my opinion – there is some 

overhead in the patterns. Some of them (let’s compare for example pattern 8 

Synchronization and pattern 33 Generalized AND-Join) are nearly the same and 

only in theory different. In the real work and day-to-day business there is no 

perceivable difference between them. Additionally this assignment has shown that 

you can describe nearly all patterns with basic instructions and a workaround.  

 

5.3 Forecast 
In future there is no need for further workflowpatterns in my opinion. The existing 

43 are totally enough – it might also be reasonable to reduce the number of 

patterns.  

However the BizAgi tool seems also to be primed for the next  generation of BPM – 

the subject oriented approach. How this could look like is presented from the HPI 

(Hasso Plattner Institute Berlin) [Weske08] in their BPMN 1.1 definition overview. 

 

 
Illustration 42: BPMN 1.1 and the subject oriented approach 

 

It is theoretically possible to model a subject oriented business process in the 

BizAgi Suite (as seen in illustration 42). 

 

For more information on this topic please refer to [Graef09] 

 

  



  
                46 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

6 List of Literature 
 
[Weske08] Prof. Dr. Matthias Weske, Gero Decker, Alexander Grosskopf, Sven 

Wagner-Boysen, BPMN 1.1, HPI Berlin, http://bpt.hpi.uni-

potsdam.de/pub/Public/BPMNCorner/BPMN1_1_Poster_EN.pdf , 2008 

 

[Uslar04] Mathias Uslar: Workflow Patterns – ein Überblick und Beispiele. Grin, 2004 

 

[Becker09] Jörg Becker, Christoph Mathas, Axel Winkelmann: 

Geschäftsprozessmanagement. Springer, 2009 

 

[Ehlers06] Stefan Ehlers: BPM – Business Prozessmanagement in Praxis und 
Anwendung. Books on demand, 2006 

 

[Aalst09] W.M.P van der Aalst: Control-Flow Patterns. 

http://www.workflowpatterns.com/patterns/control/, 2009 

 

[Graef09] Norbert Graef, Nils Tölle: Evaluation, Mapping und quantitative Reduktion 
von Workflow Pattern (Control-Flow). 2009 

 

[BizAgi09] BizAgi: BizAgi. http://www.bizagi.com . 2009 
 

7 List of Illustrations 
Illustration 1: Implementation of the "Sequence" pattern................................................... 5 

Illustration 2: Implementation of the "Parallel Split" pattern ............................................ 5 

Illustration 3: Implementation of the "Synchronization" pattern ..................................... 6 

Illustration 4: Implementation of the "Exclusive Choice" pattern .................................... 7 

Illustration 5: Implementation of the "Simple Merge" pattern .......................................... 8 

Illustration 6: Implementation of the "Multi-Choice" pattern ............................................ 9 

Illustration 7: Implementation of the "Structured Synchronizing Merge" pattern . 10 

Illustration 8: Implementation of the "Multi Merge" pattern .......................................... 10 

Illustration 9: Implementation of the "Cancelling Discriminator" pattern................. 12 

Illustration 10: Implementation of the "Generalized AND-Join" pattern .................... 15 

Illustration 11: Implementation of the "Local Synchronizing Merge" pattern ......... 16 

Illustration 12: Implementation of the "Thread Merge" pattern .................................... 17 

Illustration 13: Required properties settings for the "Thread Merge" pattern ........ 18 

Illustration 14: Implementation of the "Thread Split" pattern using a basic activity 

and the "Completion Quantity" value ........................................................................................ 19 

Illustration 15: Required properties settings for WCP 42 ................................................ 19 

Illustration 16: Implementation of the "Thread Split" pattern using a MI activity . 20 

Illustration 17: Implementation of the "Multiple Instances without 

Synchronization" pattern ............................................................................................................... 21 

Illustration 18: Menu for the right click on an activity ....................................................... 21 

Illustration 19: Properties window for an activity with the required settings ......... 22 

Illustration 20: Implementation of the "Multiple Instances with a Priori Design-

Time Knowledge" pattern .............................................................................................................. 23 

Illustration 21: Required properties settings for WCP 13 ................................................ 23 

Illustration 22: Implementation of the "Multiple Instances with a Priori Run-Time 



 
47 

Modeling Workflow Patterns through a Control-flow perspective using 

BPMN and the BPM Modeler BizAgi 

Knowledge" pattern .......................................................................................................................... 24 

Illustration 23: Required properties settings for WCP 14 ................................................. 25 

Illustration 24: Implementation of the "Deferred Choice" pattern ................................ 28 

Illustration 25: Implementation of the "Interleaved Routing" pattern using an Ad-

Hoc activity .......................................................................................................................................... 30 

Illustration 26: Implementation of the "Cancel Task" pattern ......................................... 31 

Illustration 27: Implementation of the "Cancel Case" pattern ......................................... 32 

Illustration 28: Implementation of the "Cancel Region" pattern .................................... 33 

Illustration 29: Implementation of the "Cancel Multiple Instance Activity" pattern

................................................................................................................................................................... 33 

Illustration 30: Implementation of the "Complete MI Activity" pattern ...................... 34 

Illustration 31: Implementation of the "Arbitrary Cycles" pattern ................................ 35 

Illustration 32: Implementation of the "Structured Loop" pattern ............................... 36 

Illustration 33: Implementation of the "Structured Loop" pattern with Post 

Evaluation ............................................................................................................................................. 36 

Illustration 34: Required properties for the realization of the "Structured Loop" 

pattern with Post Evaluation ........................................................................................................ 37 

Illustration 35: Alternative Implementation of the "Structured Loop" pattern with 

Post Evaluation ................................................................................................................................... 37 

Illustration 36: Implementation of the "Structured Loop" pattern with Pre 

Evaluation ............................................................................................................................................. 38 

Illustration 37: Required properties for the realization of the "Structured Loop" 

pattern with Pre Evaluation .......................................................................................................... 38 

Illustration 38: Alternative Implementation of the "Structured Loop" pattern with 

Pre Evaluation ..................................................................................................................................... 39 

Illustration 39: Implementation of the "Implicit Termination" pattern ...................... 40 

Illustration 40: Implementation of the "Explicit Termination" pattern ....................... 41 

Illustration 41: Implementation of the "Persistent Trigger" pattern ............................ 42 

Illustration 42: BPMN 1.1 and the subject oriented approach ........................................ 45 

 

 


